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In this paper we first introduce the least-squares finite element
method (LSFEM) for two-dimensional steady-state pure convection
problems with smooth solutions and compare the LSFEM with other
finite etement methods, We prove that the LSFEM has the same
stability estimate as the original equation; i.e., the LSFEM has better
cantrol of the streamline derivative than the streamline upwinding
Petrov-Galerkin method. Numerical convergence rates are given to
show that the LSFEM is almost optimal. Then we use this LSFEM as a
framework to develop an iteratively reweighted least-squares finite ele-
ment method {IRLSFEM) to obtain non-osciltatory and non-ditfusive
solutions tor problems with contact discontinuities. This new method
produces a highly accurate numericat solution that has a sharp discon-
tinuity in one element. A number of examples solved by using trianguiar
and bilinear elements are presented to show that the method can
convect contact discontinuities without error.  © 1993 Academic Press. Inc.

1. INTRODUCTION

In this paper we introduce and test numerically the
iteratively reweighted least-squares finite element method
for the solution of two-dimensional steady-state pure
convection problems. This new method is designed to
oblain accurate non-oscillatory discontinuous solutions.

We shall consider the following stcady-state boundary
vilue problem,

g =10

in Q, (1a)

=g on f_ (tb}
where £ is a bounded convex domain in W? with boundary
I, v =u(x, v)is the dependent variable {c.g., the concentra-
tion}), fi=(ff,, f1;) is a specified convection vector which
may be constant or spatially varying, u, = fi - Vir denotes the
derivative in f§ direction and g is the given data on the inflow
boundary £_ deflined by

I_={(xy)eln(x, ) f <0},
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in which n i5 the outward unit normal to I' at point
(x, ¥)e I'. The problem (1) is purely hyperbolic.

For convenience of discussion, at first let us assume that
the convection vector f# is a constant. In this case, the
characteristics of the problem (1) are straight lines parallel
to i, and the analytic solution of problem (1) is constant
along a characteristic. The value of this constant is equal to
the given value of g at the intersection of this characteristic
and the inflow boundary. Thus the solution will be discon-
tinuous with a jump across a characteristic, if the boundary
data g is discontinuous, As a simple 2D testing problem, this
situation still represents a great challenge to researchers of
numerical shock-capturing techniques.

Commonly used numerical methods for hyperbolic
problems are of the following types (see, e.g., Fletcher [10],
Hirsch [ 137, Johnson [21], and Pironneau {317): method
of characteristics, finite difference, and finite element
methods. In principle the method of characteristics is very
good, but it is rather cumbersome in practice. Usually one
uses finite difference or finite element methods based on a
mesh which may not be adapted to fit the characteristics of
the particular problem. In such a case, if the exact solution
has a jump discontinuity {contact discontinuity) across a
characteristic, all conventional finite difference and linite
element methods will produce approximate solutions which
either oscillate or smear out a sharp front. Finding accuralte
approximations of the discontinuous solutions of hyper-
bolic equations has been a persistent difficult task in
modern numerical mathematics and computational physics,

One rescarch direction towards better resolution around
discontinuitics is to use an adaptive #-refinement or
remeshing strategy, such as that cxtensively investigated
by Oden and Demkowicz [29] and Peraire ¢f of. [30].
However, the data structure and the programming of
h-refinement are complicated, especially for three-dimen-
sional problems.

Impressive resolution may be obtained by using filter
mcthods {4, 23, 9]. For example, one may use any good
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finite difference schemes, such as the schemes developed by
Deconinck et al. [7], to obtain an initial approximation
and then use filter methods to sharpen the discontinuities.

Another potential way is to use conventional finite dif-
ference or finite element methods to obtain approximate
solutions and then apply imaging processing techniques to
detect the locations of discontinuities [32, 337

All of the above-mentioned methods can only improve
the resolution around the coatact discontinuities. The L,
procedure for non-oscillatory solutions, first proposed by
Lavery in [24, 25] for one-dimensional problems, is a
rather different approach. The L, solutions are highly
accurate and right up to the edge of the discontinuity.
Lavery uses linear programining to minimize the L, norm of
the residuals of the overdetermined algebraic equations.
Standard finite difference leads to determined linear
algebraic systems. In order to obtain an overdetermined
systern Lavery relies on non-traditional tricks, such as
gradually adding a small viscous term to one-dimensional
Burgers’ equation [24]. However, it is very difficult to
extend these tricks to two-dimensional problems. Another
difficulty in Lavery’s L, procedure is that the linear
programming algorithm of Barrodale and Roberts [1] is
very expensive. This excludes the possibility of practical use
of the L, method.

Because of the difficulties associated with the L, proce-
dure in both theory and calculation, we completely avoid
the application of the L, concept in this study. Our proce-
dure for obtaining non-oscillatory solutions is based on the
least-squares method. The idea can be explained as foliows.
In the usual least-squares curve fitting, the least-squares
procedure does its best in a sense of least-squares of the
residual to make the curve pass through or by all of the
data. I the data are smooth, the least-squares fitting yields
a very good approximation. However, if the data contain
abrupt changes, the least-squares procedure will produce an
osciliatory and diffusive curve around sharp changes. In
such a case, the trouble comes from the fact the least-
squares fitting makes the use of individual datum equally
important. If we give up the outliers in the data and require
the remaining data be satisfied exactly, the curve will be
more smooth. The same thing happens in the least-squares
solutions of discretized hyperbolic equations, The least-
squares method treats equally the equations in “shocked”
elements (in which the discretized scheme does not hold)
and “smooth” elements. If we can identily the “shocked”
elements and permit the equations in the “shocked”
elements not to be satisfied while requiring that the
remaining equations be satisfied exactly, then this modified
least-squares solution will not have oscillation.

In this paper we first introduce the least-squares finite
element method for two-dimensional steady-stale pure
convection problems with smooth solutions and compare
it with other finite element methods. We prove that the
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least-squares method has the same stability estimate as the
original equation; that is, the Icast-squares method has
better control of the streamiine derivative than the
streamline upwinding Petrov-Galerkin method. Numerical
convergence rates are given to show that the least-squares
method ts almost optimal.

Since the LSFEM produces a wvery good initial
approximation to the exact solution, we use this informa-
tion to find “shocked” elements. Then we use the least-
squares method again. But this time we put a small werght
for “shocked” elements to eliminate their “pollution,”
and repeat this procedure a few times until a convergent
discontinuous solution is reached. This is our iteratively
reweighted least-squares finite element method.

The reweighting must be based on an overdetermined
system. Fortunately, it is trivial to have an overdetermined
system in the least-squares finite element method. This can
be explained as follows. The LSFEM with numerical quad-
rature is equivalent to a weighted collocation least-squares
method [3], in which at first the residual equations are
collocated at the intertor points in each element and then
the algebraic system is approximately solved by the
weighted least-squares method. The Gaussian points for
caiculating the element matrices in the LSFEM correspond
to the collocation points in collocation methods. I the order
of Gaussian quadrature {or the number of quadsature
points) is appropriately chosen, the least-squares finite
element method amounts to solving an overdetermined
system.

The arrangement of this paper is as follows. The least-
squares method, its comparison with other methods, and
the convergence tests for smooth problems are presented in
Section 2. In Section 3 we describe the iteratively reweighted
ieast-squares finite element method. The numerical results
in Section 4 contain non-oscillatory solutions for problems
with constant or spatially varying convection vector fields
on uniform or unstructured meshes. In Section 5 we discuss
the limitation of the method in the present implementation
and the posstbility of further improvement. Conclusions are
drawn in Section 6.

2, THE LEAST-SQUARES FINITE
ELEMENT METHOD

2.1. Preliminaries and Notations

As we have already shown in our previous papers (see
[20] and the references therein), the LSFEM is a universal
method for numerical solution of partial differential equa-
tions. It does not matter whether the partial differential
equations are elliptic, parabolic, or hyperbolic. As long as
the partial differential equation has a unique solution, the
LSFEM always gives a reasonably good approximate
solution. The work done in this paper is a natural extension
of our least-squares method.
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The problem (1} can be taken as a time-dependent
problem, if we consider one space coordinate as a time:like
coordinate. Then we may use the implicit time—marching
least-squares finite element method introduced in [2] to
obtain an approximate solution. The time marching is
necessary for the Euler equations in aerodynamics [ 18, 19],
since the Euler equations have nonunique sclutions.
The time-marching least-squares finite element method
implicitly introduces an artificial dissipation to exclude the
solutions with expansion shocks. For the linear hyperbolic
problem (1), the time-marching is not necessary, because it
has a unique solution, continueus or discontinuous. For
this recason, we rather treat the problem (1) as two-dimen-
sional and directly apply the LSFEM to attack it. The
general formulation of least-squares finite element methods
for first-order partial differential equations can be found
in 207

In order to see the advantages of the LSFEM and com-
pare it with other finite element methods, let us consider the
following linear hyperbolic equation:

in £2, (2a}

(2b)

uﬂﬁl‘lf:f

=g onl_,

where f'is a given source function, Without loss of generality
we assume that the boundary data g is zero.

Throughout this paper, we use the following notations:
L,(£2) denotes the space of square-integrable functions
defined on Q2 with the inner product

(4, v) = jg wdQ  w, e L,(Q),

and the norm
Neel > = (g, ), weLy(2).
H'{£2) denotes the Sobolev space of functions with square-

integrable derivatives of order up to r; |||/, denotes the
usual norm for H7(£2). We also use the following notations:

{u, w) =Jr uwn - ff ds,

{u,wh | =J uwn - f§ ds,

Fars

jul = (jr L ds)m,

where

r,={(xy)eln(xy) p>0
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We note that by Green’s formula
(g, wh= {u, wh - (u, wy).
Further, we also define the function space
S={ueH'():u=00nI_},

and the corresponding finite element subspace S,; i.e., S, is
the space of continuous piecewise polynomial functions of
order k. Here the parameter s represents the maximal
diameter of the elements. By the finite clement interpolation
theory [6,28] we have: Given a function we H*'1(Q),
there exists an interpolant #” € S, such that

oo — "l < ekl

|V —Va"|| < ch® llull, 15

(3a)
{3b)
here and below ¢ denotes a contant independent of the mesh

parameter kA, with possibly different values in each
appearance.

2.2. The Standard Galefkin Method

Now let us look at the following standard Galerkin
method for the problem (2) (see, e.g., Johnson [217]). Find
u"e 3, such that

(uf+u, why=(f,w")  Yw'eS,. (4)

We define the error e =u— u”. Then the error estimate for
the standard Galerkin method is

liel| +lel - < ch* lulli - (5)
which is one order lower than that for elliptic and parabolic

problems. Furthermore, in the continuous problem (2), we
have the following stability estimate:

lleell + gl + 1l p < c LS {6)

But in the standard Galerkin method the stability estimate
is

la®ll + [ << e 1 1, (7)

which has no control of |luj |

2.3. The SUPG Method

In order to obtain better accuracy and stability, methods
of upwinding type have appeared, see, e.g., papers by Dendy
[87], Wahlbin [34], Christie et al. [ 57, Hughes and Brooks
[ 157, Johnson et af. [22], Morton and Parrot [27]. Below
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we shall look at the streamline upwinding Petrov—Galerkin
method (SUPG) (Hughes [141) or the streamline diffusion
method (Johnson [211): Find u* & S, such that

(ug+u", wh+ hwh)=(fiwi+hw})  Yu'eS,  (8)

Johnson and his colleagues have derived the error estimate,

(1 +M 2
5 le]7) <2 ull, . (9)

(Ilellz+h llegll®+

which is near optimal. However, in the SUPG the
corresponding stability estimate is

I+ b+ et < e (10)
which means that the streamline derivative is less controlled
than in the original problem. Another disadvantage of the
SUPG in practical calculation is that the stiffness matrix is

non-symmetric, which makes the solution of large-scale
problems very difficuit.

2.4. The Least-Squares Method

Now let us introduce the LSFEM. We assume that
FeL,(£2). For an arbitrary trial function v € S, we define the
residual function R=uvy+ v~ f. The least-squares method
is based on minimizing the residual function in a least-
squares sense. We construct the following quadratic
functional:

Hw)=|RI”=llvs+v— )

=(vz+v—fiop+uv—f) (11)

The least-squares method reads: Find u € § such that

Kuy< Itw) VoeS.
Taking variation of I with respect to v and setting 8/ =0 and
dv=w, lead to the least-squares weak statement: Find ue S
such that
blu, w)=l{w) Vwe S, (12}
where b{u, wy=(uy +u, wg +whand {w)=(f, wy +w). The
corresponding LSFEM has the following form: Find u* € S,
such that
b(u", w') = l{(w") Ywie s, (13)
Let us now turn to the error estimate. Since we can
replace w in (12) by w”, we have
blu, w")y = Hw")

Yuwhe S,

{14)

581/105/1-8

1l

By subtracting (13) from {14) we obtain the following
orthogonality for the error e:

ble, w"y=0.
Let e S, be the interpolant of u satisfying (3) and write
p=u—i"and =" — u" so that e= p + (. Then we have
leg+ell® = ble, e)=ble, p)+ ble, 0) = ble, p)
Sleg+ell llps+pl
or

les+ell <llps+pl<logl+ el

Recalling (3) we obtain the error estimate:

|lef;+el!€chk leell s 51 (15)

Since the residual of approximate solution R"=
up+u' — f=egz+e, (15} is also the residual estimate,

IR* < ch* Nullisys (16)

which means that the residual estimate is optimal. Using
Green’s formula and the boundary condition, {16) can be
rewri(ten as

(hell® + llegh + <esed V2 <ch Nuily,  (17)
which shows that the error estimate for e is optimal, but the
error estimate for ¢ is one order lower than optimal
Although in numerical tests (see below) we have observed
that the accuracy of the least-squares method is higher than
the kth order, it is still an open question for getting a better
theoretical error estimate, in general.

By taking w®=gu" in (13), we can obtain the stability
estimate:

el + e 4 1) A< e AL (18}
This estimate is the same as the above estimate (6) for the
original problem {2). 1t means that the least-squares method
has better control of the streamline derivative than the
SUPG. We also note that the biiinear form in {13) is
symmetric. Therefore, the matrix of the resulting algebraic
system is symmetric and positive definite. This is a very
important advantage of the least-squares method over other
methods in practice.

2.5. Numerical Experiments of the Least-Squares Method

We chose the model problem,

3 .
a_u+iu:sin(x+y) in £2, (19a)
dx  dy

u=~0 Oﬂrﬁ, (lgb)
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where Q={(x,y)eR":0<x<l, 0<y<1} is the unit
square, and I'_ = {(x, y)e M:x=0o0r y =0}, in which /s
the boundary. This problem has a smooth exact solution
u = sin{x} sin{ ).

We have tested the bilinear element on uniform meshes.
At first the one-point Gaussian quadrature was used for
calculating stiffness matrices. In this case, the least-squares
method is equivalent to the collocation least-squares
method with one collocation peint at the center of each ele-
ment. It is easy to check that in such a collocation method,
the number of discretized algebraic equations “Nequ” is
equal to the number of unknowns “Nelen?,” here “Nelem™
is the number of elements. In other words, in such a case we
solve a determined system. Therefore, there is no difference
between the least-squares solution and the direct colloca-
tion selution. The numerical result for convergence rate is
shown in Fig. 1, The optimal rate, i.e., ||| < ch?, is observed.

Also we would like to mention that the least-squares
method with one-point quadrature is equivalent to the cen-
tral finite difference scheme. Therefore, the optimality of the
LLSFEM may be derived by using the finite difference theory.

The numerical rate of convergence with the 2 x 2 Gauss
rule is also included in Fig. 1. In this case, the LSFEM
sofves an overdetermined system. The convergence rate
is around O(h'7®), which is near optimal. Here, more
theoretical study is needed.

We also did the numerical tests with specified extra
boundary conditions on the outflow boundary I, =
{(x,pyelx=1or y=1}. In this case, the least-squares
method with the 2 x 2 Gauss rule gives the optimal rate of
convergence |le|| < ch? (Fig. 1).

From numerical experiments we may conclude that the
LSFEM for the hyperbolic equation has an optimal or near
optimal rate of convergence depending on the number of
Gaussian points in calculation of element matrices. More

,,,,,,, « 1X1
a5l : 2X2 EX
' c 2X2
L x
— 5.5
[
s |
L=
-]
'oas
1.5
I L i
1.5 2.5
-LoG(n)
FI1G. 1. Computed convergence rate for the pure convection problem,
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(Gaussian points yield slightly less optimal results, because
the least-squares method is not able to make the residual of
cach equation in the overdetermined system equal to zero.

3. THE ITERATIVE REWEIGHTED LEAST-SQUARES
FINITE ELEMENT METHOD

If the exact solution is discontinuous, the above least-
squares method still performs quite well. Of course, the
argument about the error estimates does not hold. As
expected, the least-squares method smears out the jump
across a characteristic. As we pointed out in Section 1, the
trouble comes from “shocked” elements, where the direction
derivative across the jump approaches infinity and the dis-
cretized equation is not valid. But the usual least-squares
method does not recognize them and just treats equally
“shocked” and “smooth” elements. This is the reason that
we would like to use the reweighting to suppress the inter-
ference of “shocked” elements,

Let us consider the problem (1), QOur iteratively
reweighted least-squares method is based on repeatedly
solving a weighted least-squares problem: Find the mini-
mizer #" of

= 3 (8 wonwcn), - o0)
in which
W,= —-ﬁﬁL——- (21)
R oo
and
Re= s )=S0 ), (22)

where W, denotes the assigned weight, and R, stands for the
residual at each Gaussian point, Ngaus denotes the number
of Gaussian points, w, is the weight of Gaussian quadrature,
|/} is the determinant of the Jacobian matrix, and (£,, n,) are
the local coordinates of Gaussian points. As usual, u’ can be
expressed as

Nnode

W= Y Y.(&nU,,

=

{23)

where “Nnode” is the number of nodes in an element, ¥,
denotes the shape function, and &/, is the nodal value. In
order to make the problem (20) meaningful, we must have
an overdetermined algebraic system. It can be realized
simply by appropriately choosing the number of Gaussian
points.

The IRLSFEM would begin with the initial weight
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W,=1. This first step is nothing but the least-squares
method introduced in Section 2. The result then determines
a new set of weights by (21). In the second iteration, the
tesidual |R,| is larger in “shocked” elements. Thus the
weight W, for “shocked” elements is smaller, and their
inference becomes less important. This procedure is
repeated until |72, .o — %5 o || is small. Our numerical
experiments reveal that the difference between the residuals
of “shocked” elements and those of their neighboring
clements in the first least-squares solution is not significant
enough. We put the sixth power in (21) in order to addi-
tionally increase the importance of “smooth” elements and
reduce the contamination of “shocked” elements, and also
accelerate the convergence. This is reasonable, since we
want to completely eliminate the equations, which will have
nonzero residuals, from the sytem. This trick is applicable,
also because our non-weighted least-squares method is
good enough to locate the “shocked™ elements. That is, in
the results of our least-squares method, the absolute value
of the residuals in “shocked” elements is always greater than
that in other elements.

We may further simplify the procedure by using another
simple and reliable “shock” indicator—the variation of
nodal values in each element—instead of the residval. The
variation is defined as

N node

V= Z |Um—‘Um_]la

me=1

UD= UNnoa‘e' (24)

Therefore, the following weight is suggested:

101 ir (M8

previous

<1077,

W= (25)

W— otherwise.

previous
Here some measures have been taken to prevent overflow.
The advantage of using the variation as a “shock” indicator
is as follows: Once the jump in the boundary data is given,
we may know the exact values of the variation in “shocked”
elements in advance. There are only a few possible values
which depend on the type of finite element and are inde-
pendent of the shape and size of the particular element and
have no relation with the location of quadrature points.
The implementation of this reweighted least-squares
method is really straightforward. If a least-squares finite ele-
ment code 15 already available, it needs only a few additional
line of FORTRAN statements.

4. NUMERICAL RESULTS

4.1. Constanr Convection Field

As the first example, we consider the following problem
with a constant convection vector,
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3 3
A itan3s) =0 i

ox 3y (26a)

where Q= {{x,)eR*0<x<l, O<y<l} is the unit
square with the boundary I”. The inflow boundary condi-
tions are

on [Iy={(x,y)elnx=0},

on Iy={(x,y)elx>0andy=0},

(26b)
(26¢)

Equations (26) represent uniform flow along straight lines
inclined at an angle of 35° with respect to the x-axis. The
jump discontinuity occurs along the hine y = x tan 35°, In
this case, the analytic solution is

=72 on and above the line y = x tan 35°,

u=1 below the line y = x tan 35°.

The boundary conditions (26b) and (26¢) can be trans-
ferred into the source term in Eq. (26a). Therefore, the for-
mulation of the least-squares method described in Section 2
can be applied to the problem {26).

Most of the computational results presented in this paper
were obtained in double precision from a PC-386. A direct
solver with variable band-width was used to obtain the
solution of lincar algebraic equations. The computing time
will be significantly shortened by using the preconditioned
conjugate gradient method [17], since the least-squares
solution is already close to the accurate solution and final
iterations are often just for correcting one or two nodal
values which have not yet reached 15-digit accuracy.

41.1. Linear triangular elemen:. WNuomerical experi-
ments were carried out for the problem (26) using linear
triangular elements on uniform meshes with n =35, 15. Here
n is the number of grids in each coordinate. For triangular
elements, we use the one-point Gaussian quadrature. There
are 2n° elements, so we have 21 equations. Since there are
(7 + 1)” nodal values and (2n + 1) boundary conditions, the
number of unknowns is {n + 1)* — (2n+ 1) = n? That is, the
number of equations is double the number of nnknowns.
Therefore, the least-squares method amounts to solving an
overdetermined system. It does not make sense to take more
quadrature points, because in a linear triangular element
du"/8x and Ou"/8y are constants, and thus the residuals at
different points are the same,

The least-squares results for # = 5 (50 triangles) are listed
in Table I. The numbers in Table I are the nodal vailues.
Because the mesh is very coarse, the jump discontinuity is
smeared severely. Starting from this bad least-squares solu-
tion, after four iterations of the IRLSFEM, we obtained the
perfect discontinuous solution listed in Table II. This
solution is correct to 15 digits. Here we should note that a
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TABLE 1
Nodal Values of LSFEM Solution for Constant Convection Problem {50 Triangles)

2.00000000000000
2.00000000000000
2.00000000000000
2.00000000000000
2.00000000000000
2.00000000000000

2.01915334035031
1.99603039945673
1.94806983617172
1.8401529686823¢
1.589619565405281
1.00000000000000

2.00878377705754
1.94359655185347
1.83312457760137
1.64119153265938
1.34285281744499
1.00000000000000

1.95795161549498
1.84950746061654
1.68739850887601
1.45765775017840
1.190882 13790645
1.00000000000000

1.87078986840619
1.72946724328320
1.53694793617237
1.30434056518568
1.09256035611348
1.00000000000000

1.76004129143337
1.60187592334918
1.39560269306355
1.17833947348198
1.02302063798659
1.00000000000000

TABLE 11
Nodal Values of IRLSFEM Solution for Constant Convection Problem (50 Triangles)

2.00000000000000 2.0000000000G000 2.00006000000000 2. 060600000GG060C  2.0006G000000000 2. GG000000000000

2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000

2.00000000000000 2.00000000000000 2.00000000000000 2.0000000000000C 2.00000000000000 2.00000000000000

2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 1.00000000000000 1.00000000000000

2.0000000000000¢ 2.00000000000060 1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000

2.0000000000000C  1.000000066CC000C  1.00000660G0GA00  1.00600000000000C  1.06060006000000000 1. G0000000000000
TABLE I

Nodal Values of LSFEM Solution for Constant Convection Problem (450 Triangles)

2.0000000 2.0000000 1.9999591 1.9999978 2.0000043 2.0000324 2.0000792 20000841 1.9999031 1.9993477 1.9983422 1.9972057 1.9969902 1.9997302 2.0084309 2.0264882
2.0000000 1.9999994 1.9999999 2.0000102 2.0060396 2.0000696 2.0000175 1.9997292 1.9990557 1.9980523 1.9972818 1.9981173 2.0028601 2.0144271 2.0352553 2.0577675
2.0000000 2.0000012 2.0000123 2.0000370 2,000043C 1.9999327 1.9995575 1,9988315 1.9979632 1.9977589 1.9998528 2.0066385 2.0206392 2.0430727 2.0619832 2.0526709
2.0000000 20000088 2.0000256 2.0000073 1.9998496 1.9994236 1.9987233 1.9981178 1.9986321 2.0020685 2.0107267 2.0264960 2.0492754 2.0513019 2.0320698 1.9367367
2.0000000 2.0000099 1.9999761 1.9997933 1.9993623 1.9967634 1.9985193 1.9998269 2.0045468 2.0147111 2.0514111 2.0532226 2.0550311 2.0019622 1.8760488 1.6882363
2.0000000 19999672 1.9957887 1.9993972 1.59B9567 1.9991208 2.0011985 2.0069996 2.0481516 2.0348735 2.0545522 2.0426499 1.9620305 1.8058091 1.5¢97689 1.3859685
2.0000000 1.9998552 1.9995343 1.9992720 1.9998212 2.0025413 2.0090988 2.0206351 2.0365176 2.0531928 2.0236216 1.9117724 1.7266195 1.5085493 1.3035851 1.1447709
2.0000000 1.9997529 1,9996358 2.0004676 2.0036055 2.0105131 2.0218266 2.0361625 2.0493453 1.9971664 1.8504066 1.6391658 1.4167765 1.2273869 1.0940975 1.0191373
2.0000000 {.9999310 2.0008637 2.0041219 2.0109463 2.0215017 2.0338277 2.0434385 1.9619584 1.776B645 1.5444663 1.3264704 1.1592926 1.0532532 1.0007009 0.9846115
2,0000000 2.0007854 2.0038302 2.0101735 2.0195932 2.0297290 2.03606% 1.9157434 1.6898964 1.4442300 1.2406204 1.1012316 1.0226002 0.9895001 0.9835187 0.9887509
2.0000000 2.0025083 2. 0080708 2.0161825 2.0242529 2. 0279403 1.B548782 1.5684566 1,3413083 1.1627018 1.0549356 1.0020162 0,9845132 0.9852021 05916119 0.9970319
2.0000000 2.0046362 20115086 2.0179190 2.0197922 1.7736683 1.4724987 1.2401636 1.0965466 1,0215749 0.9907151 0.9843607 0.9885294 0.9945579 0.9985752 1.0001280
2.0000000 2.0059503 20113358 2.0123645 1.6634838 1.3441459 1.1471893 1.0458292 1.0073261 0.9871854 D.9874108 0,9924190 09970772 0,9996177 1.0003480 1.0002567
2.0000000 2.0051508 2.0062402 1.5115843 1.2102058 1.0706330 1.0131927 0.9930033 0.9B92513 0.9919701 0.9959726 0,.99B8566 1.0001329 1.0003334 1.0001647 1.0000323
2.0000000 2.0020006 1.2993847 1.0856744 1.0194373 0.9989902 0.9938830 0.9943473 0.9965288 0.9985854 0.9997993 1,000207% 1.0001815 1.0000439 1.00600041 0.9999972
2.0000000 1.000000C 1.0000000 1.0000000 1.0000000 1,0000000 1.0000000 1.000GO00 1,9000000 1.000000C 1.0000000 1,0000000 1.0000000 1,0000000 10000000 1,0080DOD
TABLE IV
Nodal Values of IRLSFEM Solution for Constant Convection Problem (430 Triangles)
2.0000000 2.0000000 2,0000000 2.0000000 2.0000000 2.0000000 2.06000C0 2.0000000 2.0000000 2.0000000 2.0000000 2.00000G0 2.0000000 2.0000000 2.0000C00 2.0000000
2.0000009 2.0000000 2.0000000 2.0000000 2.0COCOD0 Z.0000000 2.0000000 2.GOGOCOD 2.0000000 2.000000C 20000000 2.0000000 2.0000000 2.0000000 2.0000090 2.0000000
2.0000000 2.0060000 2.0002000 2,0000006 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.00CO000 20000000 2.0000000 2.0000000 2.0000000 2.0000000
£,0000000 2.0000000 2.0000000 2.0000000 2.0000000 2,0000000 2.0000000 2.C00Q00C 2.0000000 Z.0Q00000 2,0000000 2.000000C 2.0000000 2.C0G0000 2.0000000 2.0000000
2.0000000 20000000 2.0000000 2.0000000 2.000000C 2.0000000 2.00000C0 2.0080000 2.000000C 20000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000
2.0000000 2.0000000 2.0000000 2.0000000 2.000COC0 2.0000000 2,0000000 2.COGOCOC 2.0000000 2.0000000 2.00000C0 2.00000CC 2.0000000 2.GOGOGOO 2.000C000 1.0000000
2.0006600 2.0606000 2,000000G 2.0000000 2.0606000 2.060600C 2.0000000 2.000060¢ 2.000000G 2.0600060 2.06000G0 2.0060500 2.8080500 1.5000000 1.0600000 1.0000000
2.0000000 2.0000000 2.0000000 2.0000000 2.00000C0 2.0000000 2.000000¢ 2.0000000 2.0000000 2.0000000 2.0U0RGCO 2.00C0COC 3.0000000 1.000ODOO 1.000C000 1.0000000
2.0000000 2,0000000 20000000 £.0000000 2.0000000 2,0090000 2.0000D00 2.00000C0 20000000 2.0000000 10000000 1.0000090 1.0000000 1.D0000ED 1.00D0000 1.0000000
2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 1.0000000 1.0C0GOCO 1.0000000 1.0000000 1.0000000 1,0000000 1.000C000
2.0000000 2.0000000 2.0000000 2.0000000 2.GOGOCON 2.0000000 2.0000000 2.0000000 1.0000000 1.4000000 1.0000000 1.0000000 1.0000000 1.00000C0 3.0000000 1.0000000
2.0000G00 2.0000000 2.000000C 2,0000000 2.0000000 2.00000C0 1.0000000 1.0060030 1.000000C 1.0600000 1.0000000 1.0000000 1.0000000 1.0000030 1,0000000 1.000000O
2.0000000 2.0000000 2.0000000 2.0000000 2.000OC00 1.0000000 1.0000000 1.0C0COCO 1.0000000 1.0000000 1.000000C 1.0000000 1.000000C 1.0C00O00 3.0000000 1.0000000
2.0000000 2.0000000 2.0000000 1.0000000 1.0000009 1.9006000 1.00C0000 1.0000030 1.0000000 1.0C0B00C 1.000000T 1.0000000 1.0000000 1.0000000 1,0000000 1.0G00000
2.0000000 2-0000000 10000000 1,000000¢ 1.0000000 1,0000000 1,0000000 1.0G00O0O 1.0000093 1.DOVC00O 1.0000000 4.00000GC 1.000000G 1,6000000 1.00000600 1.0000000
2.0000000 1.0000000 1.0000000 1.0000000 1.0000600 1.0000003 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0009000 1.0000000 1.0000000 1.0000000 1.0000003
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FIG. 2. Contours of LSFEM sclution for constant convection
problem (450 triangles).

double precision (8 bytes or 64 bits) real number in a com-
puter can only represent a decimal number with 15 digits.
This selution has no oscillation nor diffusion. The transition
over the discontinuity is accurately located in the vicinity of

the line y=xtan 35° and is accomplished in just one
element.
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FIG. 4. Unstructured mesh with 450 triangles.

The least-squares solution for n=15 (450 triangles) is
given in Table Il and depicted in Fig. 2. This solution is
diffused and slightly oscillatory around the jump. Starting
from this least-squares solution, the accurate discontinuous
sojution is obtained after four iterations (see Table I'V and
Fig. 3). This solution again has 15-digit accuracy. Because
of the limitation of page size, we give the nodal values with
only 8 digits in Table IV,

ATV 1L 11
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FIG. 3. Contours of IRLSFEM solution for constant convection
problern (450 triangles).

FIG. 5. Contours of IRLSFEM sclution for constant convection
problem on unstructured mesh.
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TABLE YV

Nodal Values of .SFEM Solution for Constant Convection Problem (5 x 5 Bilinear Elements)

2.00000000000000
2.00000000000000
2.00000000000000
2.00000000000000
2.00000000000000
2.00000600000000

2.0011882186076%
2.01241750321268
2.01537346600061
1.98845751860405
1.8B3715624421649
1.00000000000000

2.01641923943302
2.02821882122379
1.99258728453429
1.82899110753578
1.34523292809047
1.00000000000000

2.03803285463046
2.00791191195100
1.86179903261828
1.51246025807770
1.12702336347438
1.00000000000000

2.02836549017373
1.90483206371286
1.62T46979769939
1.25623579014445
1.02575100553365
1.00000000000000

1.94221664119897
1.72670330578520
1.37690702085225
1.07987201470759
0.98654845422136
1.00000000000000

TABLE VI

Nodal Values of IRLSFEM Solution for Constant Convection Problem (5 x 5 Bilinear Elements)

2.00000000000000
2.900000000060000
2.000003006G0000
2.00000000000000
2.00000000000000
2.00000000000000

2.00000000000000
2.00000000000000
2.00000000606000
2.00000000000000
2.00000000000000
1. 00000000000000

2.00000060000000
2.00000000000000
2.00006000000000
2.00000000000000
1.00000000000000
1.00000000000000

2.00000000000000
2.00000000000000
2.00000000000000
2.00000000000000
1.00000000000000
1.00000006600000

2.00000000000000
2.00000000000000
2.00000000000000
1.00000000000000
1.00000000000000
1.000600CG0000000

2.00000000000000
2.00000000000000
2.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000

TABLE VII
Element Residuals of iIRLSFEM Solution for Constant Convection Problem (5 x 5 Bilinear
Elements)
(0.18702E- 14 0.176G55E-15 0.49194E- 14 G.4B678E-14 G.22330E-14
0.92255E-15 0.49022E-14 0.35553E-14 0.11563E-15 0.18920€E-14
0.18702E-14 0.18828E-14 0.59523E-16 0.20000e+01 0.20000E+01
0.85381E-15 0.20000E+01 0.20000€E+01 0.20000E+01 0.14050E-14
0.20000E+01 0.20000g+01 0.49960E-15 0.64103E-16 0.49960DE-15
TABLE VIl
Element Variations of IRLSFEM Solution for Constant Convection Problem (5 x 5 Bilinear
Elements)
0.71054E-14 0.10658E-13 0.19540€E-13 0.19540E-13 0.88818E-14
0.1065BE-13 0.19540E-13 0.15987E-13 0.53291E-14 0.88818E-14
0.71054E-14 0.88818E-14 0.35527E-14 {.80000e+01 0.80000E+01
0.71054E-14 0.80000E+01 0.80000E+01 0.80000E+01 0.53291E~14
0.80000£+01 0.80000E+01 0.17764E-14 0.17764E-14 0.17764E~14
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TABLE IX
Nodal Values of LSFEM Solution for Constant Convection Problem (15 x 15 Bilinear Elements)

2.6000000
2.0000000
2.0000000
2.9000000
2-0000000
2.0000000
2.06000009
2. 000000t
2.00060600
2.0000000
2.0000000
2.0000000
2.0000000
2.0000000
2.0000600
2.0000000

2.0000212
1. 9999904
1.9998790
1.9997621
1.9997900
2.0001224
2.0008544
2.0015629
2.003308%
2.0046162
2.0054601
2.0050206
2.0002628
1.9748483
1.8325134
1.0200000

2.0000235
1.9998523
1.9995999
1.9995272
1.9999678
2.0011670
2.0031610
2.005727%
2.0083847
2.010276%
2.0095997
2.0007867
1.962004¢
1.8122040
1.3476253
1,0000000

1.9999043
1.9995395
1.99928%%
1.5996492
2.0010622
2.00356893
2.0073092
2.011272%
2.0143503
2.0139136
£.0028918
1.9598332
18200667
1.5070281
1.1428679
1.000000C

1. 9995902
1.9991398
1.9992720
2.0006521
2,0035448
2.0080903
2.0132509
2.0175%46
2.0179346
2.0065678
1.9640549
1.8479140
1.6028546
12783532
1.0556664
1.0000000

1.9091208
1.9989339
2.0000576
2.0031274
2.0081435
2.0143273
2.0199634
2.02157 1
2.0112377
1.5719395
18711947
1.6716377
1.3887235
1. 1386935
10179156
1.0000000

2.0022737
2.0075757
2.0145886
2.0214609
2.0245242
2.0161%08
1.95813466
1.8940468
1.7256691
1.4801908
1.2272944
1,0602254
1.0013554
1.0000000

1.9987157 1.9988191 2.0000744 2.0032143 2.0087875
1.9904092 2.0012133
2.0064850
2.0140821
2.0220904
2.0267985
2.0210091
1.5911834
19159006
1.7715333
1.5553954
1.3122381
1.1178980
1.0183334
0.9943825
1.0060000

2.0167032 2.0257342 2.0329932 2.0339427 2.0231248
2.0275467 2,0331377 2.0315441 2.0183976 1.9915600
2.0325802 2.0282442 2.010709% 1.9750764 1.920498%
2.0235360 20003933 1.9569290 1.8901454 1.7993285
1.9876125 1.9344352 1.8555985 1.7527483 1.6304773
1.9088083 1.8174699 1.7025820 1.5719411 1.4346342
1.7752395 1.46487816 1.5109808 1.3733297 1.2456297
1.5912054 1. 4483064 1,3127210 1.1939395 1,09B1475
1.3842675 1.2537882 1.1460899 1.064849% 1.0103898
1.1963829 1,1025325 1.0366001 0.9961249 0,9770358
1.0644335 1.0143365 0.986623% 0.9760920 0.9773165
0.9985778 0.9820453 05779457 0.9815875 0.9834704

Q

0

1

1

2.0049874 2.0110995 2.0191630
2.0128797 2.0208777 2.0285851
2.0218586 2,0288300 2.0311260
2.0282379 2.0286770 2.0172917
2.0252756 2,0097012 1.9725557
2.0008813 1.9554102 1.8797042
1.9364385 1.8474582 1.728637%
1.8118530 1.6774694% 1.5298185
1.6205645 1.4630452 1.3178925
1.3907720 1.2504091 1.1417529
1.1831069 1.0921987 1.0331987
1.0498305 1.0103198 0.9899060 0.9820555 0.9821432 0.9866074 0.9924748 0.9974802
0.9972563 0.98B0B43 0.9859612 0.9879052 0.9917679 (1.9958585 0.9985563 1.0004876
0.9921568 (1.9924889 0.9541953 0.9964107 0.9984429 D.9998264 1.0003956 7.0003061
1.0000000 1,0000000 1.000000¢ 1.0000000 1.6000000 1.0000000 1,0000000 1.0000000

The method was further tested on a unstructured mesh
with 450 non-uniform triangles shown in Fig. 4. After four
reweighted iterations the discontinuity was correctly
captured again in one element (see Fig. 5).

4.1.2. Bilincar Element. WNumerical experiments were
also carried out for the probilem (26) using bilinear elements
on uniform meshes with n = 3, 15, 40, and 100. For bilingar
elements we use the 2 x 2 quadrature. In each element we
may write the finite element approximation of u as a bilinear
function:

w'(x, yy=a+bx+cy+dxy.

Thus the residual is
4

a L]
R'= %u: +tan(35°)

o'
dy
=b+tan(35°}c + d{y + x tan(357)),

which means that the four discretized equations at four
Gaussian points are independent in this case. (I the flow
inclines at an angle of 45° or 135° with respect to the x-axis,
we have three independent equations, because the location
of Gaussian points is symmetric.) Al together we have 4n°
equations and »* unknown nodal values. Therefore, we deai
with an overdetermined system.

The least-squares solution on a coarse mesh with 5x 5
bilinear elements is listed in Table V. Starting from this
rough solution, after four iterations we obtained the discon-
tinuous solution listed in Table VI. We again observe a crisp
computational jump in one element. This solution is per-
fectly non-oscillatory and non-diffusive. We also list the
summation of four absolute residuals and variations in each
element in Table VII and Table VIII. The large numbers
(two for residual and eight for variation) indicate the
“shocked” elements.

The contours of the least-squares solution on a mesh with

TABLE X
Nodal Values of IRLSFEM Solution for Constant Convection Problem (15 x 15 Bilinear Elements})

2.0000000
2.-0000000
2.0000000
2.0000000
2.0000000
2. 000000
2.0000009
2.0000000
2.0000000
2.0000000
2.0000006
2.0000000
2.0000000
2.,000¢000 2,9000000
2.0000D00 2.0000000
2.000600d 1.040Q00000

20000000
2.0000000
2,0000000
2.0000000
2.0000000
2.0000000
2.0000009
2.0000000
2.0000000
2.0600060
20000000
2.0900000
2.0000000

2.000G000
2.00a00000
2.0000000
2.0000000
2.9000000
2.5000000
2.0000000
2.0000000
2,0000000
2.0000000
2.0060000
2.0000000
2.0900000
2.00000060
1.0000000
1.0000000

2.0000000
2,0000000
2.0000000
2.0000000
2.0000000
2.D00G000
2,0000000
2.0000000
2.0000000
2.0000009
2.0000000
2.0000000
Z.0000000
2.0000000
3. 0CODODD
1.0000Q000

2.0000C00 2.0000000
2.0000000 2Z.0000000
2.0000000 2.0000000
2.0000000 2.0000000
2.0000000 2.0000000
2.0000000 2.9000000
2.0000000 2.060000¢
2.0600000 2.0000000

2.

2.

2.

2.0000000
2.0000000
2,0000000
2.0000000
2,0000000
2.0006000
2.0000000
2.0008000
2.0000000
2.0000000
2.0090000
1.00000G0
1.0000000
1.0000000
1.0000000
4.0000000

2., 0000000
2.000c000
2., 0000000
2.0000000
2.0000000
2.0000000
2.060600600
2.0000000
2.0000000
2.0600060
2.0000000
1.0000000
1.0000000
1.0000000
1.6L0o000OD
1.0000000

2.000000C 2.0000000
2.0000000 2.0000000
2.0000008 2.0000000
2-0000000 2.6000000
2.00060000 1.0000C00
1.0000000 1.0000000
1.0000000 1.000000D
1.0000000 1.0Q00000

2.0006000 2.0000000 2.006000GC 2.0000000 2.000000G 2.00000C0 2.0000000 2.0000000
2.000000C 2.00G0000 2.0000000 2.000000C 2.0000000 2.0002000 Z,0000000 2.00000Q0
2.0000000 2.0000000 2.0000006 2,0000000 2.0000000 2.00000C0 2.000000C 2.0000000
2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000
2.0000000 2.0000000 2.0000000 2,6000000 2.0006000 2Z.00G0000 2.0000000 2,00000QC
2.0000000 2.0000000 2.0G0T0D0 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000
2.0000000 2.0000000 2.0QG0000 2.00Q0000 2.0000000 2.6000000 1.00000G0 1,0000000
2.6000000 2.0000000 2.0000000 2.0060000 1.0000000 1.0000600 1.000000Q 1.00060G0
2.,0000000 2.0000000 2.0000000 1.0000006 1.0000000 1.000000C 1.0QG0CO0 1,0000000
2.000000C 1.6000000 1,0000000 1,0000000 f.0000900 1.0Q0G0G0 1.0000000 1.0060000
1.0000000 1.0000000 1.0000C0C 1.0C0000C 1.0000C00 1.0000000 1.0000000 1.00000C0
1.0000006 1.0000000 1,0000000 1.0000000 1.06000000 1.0000000 1.0000000 1.0000000
1.0000000 1.0000000 1.0000000 1.0000000 1,.0000G00 1,Q00G000 1,0000000 1.0000000
1.0000000 1.000000CG 1.0000000 1.0000000 1.0000000 1.0000000 1.00000C0 1.0000000
1.000D00T 1.000GDO0 1,0000000 1.500D000 1.0000000 1.000000D0 1.0000000 1.000G000
1.0000000 1.0Q0000¢ 1.0000000 1.Q000000 1.0000006 1.0000000 1,0000000 1,0000000
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FIG. 6. Cdntours of LSFEM solution for constant convection
problem (15 x 15 bilingar elements),

15% 13 bilinear elements is presented in Fig. 6. This
approximate solution is reasonably good, although the
discontinuity is smeared out and slight oscillations occur.
From this figure, we can hardly tell where the jump is
located. However, after five iterations, a clean non-diffusive
solution is reached (see Fig. 7). This solution again is
15-digit correct.

The least-squares solution on a mesh with 40 x 40 bilinear

N

_

Ry

FIG. 8. Contours of LSFEM solution for constant convection
problem (40 x 40 bilinear elements).

elements is illustrated in Fig. 8. Taking this initial least-
squares solution, and after eight steps of processing, we
obtained the highly accurate solution illustrated in Fig. 9.

We also did numerical tests for meshes with up to
100 x 100 elements, combined with various inflow angles
and different boundary conditions. ‘All of our IRLSFEM
results are perfect. Because of the page limitation, we do not
present these results here.

FIG. 7. Contours of IRLSFEM solution for constant convection
problem (15 x 15 bilinear elements).

FIG. 9. Contours of IRLSFEM sclution for constant convection
problem (40 x 40 bilinear elements).
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F1G. 10. Contours of LSFEM solution for circular convection
problem (100 x 100 bilinear elements, 2 x 2 quadrature).
4.2, Spatially Varving Convection Field

Following Deconinck et al [7], we considered the
problem (la) in the unit square with a circular convection
field,

Bi=y, (27a)
B, =05—x, (27b)

FIG. 11. Contours of LSFEM solution for circular convection
problem {ene-point quadrature).

FIG. 12. Contours of IRLSFEM solution for circular convection
problem (100 x 100 bilinear elements, 2 x 2 quadrature).

and boundary conditions,

H(O, _})) = O’ (27(}')

u(x,1)=0, x=05 (27d)
0 x<017;

ux, =<1 017 < x < 0.33; (27e)

0 0332 x<05.

The mesh with 100 x 100 uniform bilinear elements was
employed. The size of the elements in this mesh is 0.01

o

or—

—
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&0 0.2 0.4 0.6 0.8 1.0

X

FIG. 13. Boundary distribution of « for circular convection problem.
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(compare with 0.005 in the mesh used in [77]). Therefore, we
modified the data a little bit in (27¢) in order to make them
consistent with the lower resolution of our mesh. In the
least-squares finite element solution with 2 x 2 quadrature,
as seen in Fig, 10, the input distribution (the left half of the
lower boundary) is smeared quite a bit by the time it réaches
the outflow (the right half of the lower boundary). Starting
from this diffused solution, we still obtained a completely
non-oscillatory: and non-diffusive solution with correct
jumps in just one element. However, the location of com-
puted contact discontinuities on the outflow boundary has
deviation of one or two grids from the exact solution. As
indicated in Section 2, we may use the reduced integration
{one point quadrature) to obtain a bette initiai solution,
which is shown in Fig. 11. This solution looks terrible but
contains the correct information about the location of
discontinuities. Starting from this oscillatory solution, after
cight reweighted iterations (with 2x2 quadrature) we
obtained a perfect 14-digit correct discontinuous solution
shown in Fig. 12. The distribution of « on the bottom
boundary of the domain is shown in Fig. 13. No other
currently available methods can produce such a sharp and
highly accurate resolution.

5. DISCUSSION

In the early version of this paper {16], the author mis-
takenly considered that the correct discontinuous solution
1s the minimizer of the L, norm of the residual, and thus
called the IRLSFEM an L, method. Immediately after the
publication of [167], Lowrie and Roe [26] reproduced the
results and found that the accurate discontinuous solution
does not minimize the L, norm of the residual. They further
proved that for problem (26) the L, minimizer and the
accurate discontinuous solution cannot be the same. This is
an important discovery. It also implies that our method is
totally new from concept to implementation.

Obviously, the present version of the iteratively
reweighted least-squares finite element method cannot be
used for problems with smooth solutions such as problem
(19). This method will take the elements with larger
gradients as “shocked” clements and completely ignore
them and will then yield a wrong discontinuous solution.

If the given data g in problem (1) are varying along the
boundary f"_ with large gradient and a small jump, we will
have the same difficulty. This type of difficulty is refated to
the numerical measure of discontinuity which is different
from the mathematical definition of discontinuity, That is,
we must distinguish the discontinuity from large gradients,
This type of difficulty can be overcome by using fine meshes
and specifying an appropriate level of jump for a particular
problem. Only if the variation indicater of an element
defined in (24) exceeds this level, should the contribution of
this element be eliminated.

BO-NAN JIANG

The choice of the sixth power in (21) is based on our
limited experience. In fact, the method is not sensitive to the
number of the power. The third, fourth, filth, seventh, ...
powers, all of them, work well. The only difference is that
the number of iterations to convergence is different. Here
the essential issue is how to completely eliminate the equa-
tions in “shocked” elements, and it does not matter what
means are employed. Of course, a theoretic investigation to
find an optimal way is very welcome.

6. CONCLUSIONS

A new procedure, based on the iteration of least-squares
finite element method for the solution of pure convection
problems with contact discontinuities, is developed. The
overdetermined algebraic system is inherently obtained by
choosing an appropriate number of Gaussian points in the
formation of clement matrices. Through reweighting the
contamination of “shocked” elements is eliminated.

This finite element method captures two-dimensional dis-
continuity in bands of elements that are only one element
wide on both coarse and fine meshes. The solution of this
method has no smearing nor oscillation and has superior
accuracy. The method is simpie and robust. The concept can
also be applied to three-dimensional problems.

We believe that the methodology developed in this paper
can be transferred into many other areas which deal with
sharp fronts such as oil reservoir simulation, weather
forecast, pollution control, and image enhancement. We
have already tested this method for two-dimensional com-
pressible flows with shocks. The preliminary results are
encouraging,
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